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Abstract—An efficient method to compute the 2-D and 3-D
capacitance matrix of multiconductor inter ts in a multi-
layered dielectric medium is presented. The method is applica-
ble to conductors of arbitrary polygon shape embedded in a
multilayered dielectric medium with possible ground planes on
the top or bottom of the dielectric layers. The computation time
required to evaluate the space-domain Green’s function for the
multilayered medium, which involves an infinite summation, has
been greatly reduced by obtaining a closed form, which is de-
rived by approximating the Green's function using a finite
number of images in the spectral domain. The corresponding
space-domain Green's functions are then obtained using the
proper closed-form integrations. The el ts of the t
matrix are computed using the closed-form formulation, avoid-
ing any numerical integration. The presented method showed
good agreement when compared with other published results.

I. INTRODUCTION

The computation of parasitic capacitance coefficients in
multilayered media is most commonly performed using an
integral equation [1}-[4]. One major limitation of this ap-
proach is the infinite summation involved in the computation
of the Green's function and the inexistence of a closed-form
expression in the space domain. As noted in [2], for N layers;
the expression for the Green’s function would consist of N-1
infinite series. Alternatively, the free-space Green’s function
is used in [2] to avoid infinite series, but additional unknown
charges on the dielectric interface and ground planes, on top
of the unknown charges on the conductor surface, must be
included.

Yet another approach to avoid an infinite summation is to
solve the integral equation in the spectral domain (SDA),
where the Green’s function is in a closed form; however, this
approach can not be applied to general problems, e. g., con-
ductor with a finite thickness. In this paper, the Green’s func-
tion for the layered medium is approximated in the spectral
domain using the exponential functions, which is equivalent
to a finite number of weighted real images in the space do-
main. Although the complex-valued exponentials, which are
often used in a nonquasi-TEM analysis [5], can also be em-
ployed to reduce the number of weighted images, the real-
valued exponentials are sufficient to approximate for quasi-
TEM applications, and it further avoids the use of expensive
complex operations. Since the spectral-domain representa-
tions of the Green's function for 2-D and 3-D cases are iden-
tical, the approximation is only performed once for both
cases. After determining the equivalent weighted images in
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Fig. 1. The geometric configuration used for determining the Green's
function.

cases. After determining the equivalent weighted images in
the spectral domain, they can be directly used to evaluate the
Green’s function in the space domain.

II. APPROXIMATION OF THE GREEN'S FUNCTION IN THE
SPECTRAL DOMAIN

Consider a unit point charge located at the mth layer at
(X0,¥0,20) (Fig. 1). Noting that the dielectric medium is uni-
form in two directions, we can represent the Green's function
and the point source in the spectral domain in terms of its
transforms in the x and z directions. Then, solving the corre-
sponding spectral-domain Laplace's equation with appropriate
boundary conditions at the dielectric interfaces, the spectral-
domain Green's function can be found as
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where G(«, B y|ro ) is the spectral domain Green's function
and o and PBare the transform constants associated with the x
and z directions, respectively. The subscript m denotes the
layer where the source is located (source point) while the
subscript n denotes the layer where the Green's function is
evaluated (observation point). f‘j, j+1 is the generalized re-
flection coefficient, which is the ratio of the amplitudes of
voltages at y=dn due to the image charges located above and
below the jth layer. fj’ j+1 takes the value of O or -1 if the jth
layer is a half space, or the (j+1)th layer is a ground plane,
respectively. The superscript + is used to denote the quanti-
ties related with the Green's function for y > y,. The similar
expressions can be obtained for y<y,.

In Equation (1), K,J;w, ; 1s pot a function of y and y,, and
the determination of the closed-form space-domain Green's
function can now be preceded by approximating the coeffi-
cient functions K,J,’,, n,i Of the exponential terms. It is impor-
tant to notice that we have also factored out other exponential
terms which dominate the behavior of the function for large ¥,
this, in turn, will assure an accurate approximation of the
function at the short range of distance in the space domain.

A physically intuitive approach to approximate the poten-
tial due to a charge in the layered medium is the use of a
finite number of the weighted image charges in the homoge-
nous medium, which is equivalent to approximating the co-
efficient functions K,';'L ni With exponential functions in the
spectral domain. The equivalence between the weighted
image charges and exponential functions will be shown later
in Equations (15) and (16). Noting that the coefficient func

Fig. 2. The geometry used to test the approximated Green's function.

tions K,‘,Ll,m- are real-valued and nonoscillatory, the real-
valued exponentials are sufficient to approximate the coeffi-
cient functions and avoid any complex operations. A relax-
ation algorithm based on curve fitting in [6] is used here.
Although this method is simple and iterative in nature, it
converges to reasonable accuracy in a few iterations, and
requires less computation time as compared to the other exist-
ing methods, such as, the generalized pencil-of-function
(GPOF) and the Prony methods.

In the process of the approximation, the symmetry of the
coefficient functions K, ,: ni 1s explored to increase the accu-
racy of the approximated functions and to reduce the compu-
tation time. The same approximation procedure can be ap-
plied for the case for y<y,.

The Green's function for the structure shown in Fig. 2 is
approximated and compared with the exact Green's function
in the spectral domain. The dielectric constants €1, €2, and
€3 are taken to be 2gq, 5¢¢, and €, accordingly. The thick-
nesses of the layers t] and t) are 0.6 mm and 1.0 mm, and the
source and observation points, y and ye, are 0.6 mm and
1.6mm, respectively. A maximum frequency of 10 kHz and
an average number of 7 exponentials were used to approxi-
mate the Green's function. As shown in Fig. 3(a), the ap-
proximated results agree with the original one, except for
very small arguments where the approximation errors are
amplified by the singularity factor (see Equation (1)). It is
important to observe that although the exponential approxi-
mation might fail to approximate for the large argument due
to its fast decaying nature, by extracting the asymptotic value
and the exponential factor from the coefficient function, the
limiting behavior of the overall approximated Green's func-
tion would still remain accurate. Hence, it is expected that
the approximated Green's function will be accurate for the
short distance range in the space domain.

After approximating the Green's function in the spectral
domain, one can obtain the space domain Green's function
using the following identity:
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Fig. 3. Comparison of approximated and exact Green's functions in (a) the
spectral domain and (b) the space domain for the 3-D case.

which can be viewed as the static version of Weyl's identity
and can be derived by considering the potential due to the

unit point charge. Thus, in the space domain, the approxi-
mated Green's function can be written as

4
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where the superscript + for y >y, and - for y < y,. For j=1,
the expression for fj+( rr, ) is given by
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Here, K;l: ; denotcs+the a.symptoti.c value of Kj, . j and we
have assumed that K, , ; is approximated by
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where N,',*,, n,j is the number of exponential functions used to
approximate the coefficient function K,T,’ -

The identical expression can be derived for the two-
dimensional Green's function where the transform variable ¥y
will be associated with x, and the following identity can be
used to obtain the space-domain expression:
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Thus, the space domain expression similar to Equation (8)
can be obtained as follows:
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where, ff( rlr, ) is the corresponding logarithmic function.

The approximated Green's function is also compared in the
space domain. The same structure is used as in the previous
one with £)=£1=2¢, and z and z, were 0.6 mm and 1.6 mm,
respectively. A maximum frequency of 4 kHz and 5 expo-
nentials were used in the approximation. The exact Green's
function is obtained by applying the image principle in the
space domain. Again, both Green's functions are plotted in
Fig. 3(b) and showed a good agreement.

Although it is not clearly shown in Fig. 3(b) the relative
approximation error was found to increase monotonically as
the distance between the source and observation points in-
creased; however, the error still remained small for a practical
range. In this particular case, the relative error at p=100 mm
was less than 1 percent.

IV. SOLUTION METHOD FOR THE INTEGRAL EQUATION

The integral equation relating the electrostatic potential
V(r) to the charge density p(r) is

V(r)=[G(r,r )p(r' )dr' (13)
Q

where G(r,r') is the Green's function for the multilayered

medium, and £ is surfaces or cross-sectional boundaries of

all conductors for 2-D or 3-D problems, respectively.

Employing the pulse-type basis functions and the point

matching technique, Equation (13) becomes
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where gy, is the unknown coefficient to be determined, and
Nt is the total number of basis functions used. The closed-
form formulae for the evaluation of Equation (13) over an
arbitrary polygon patch and a line segment are given in [7].
Thus, the resulting matrix form Equation (13) can be con-
structed without any numerical integration.
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II. NUMERICAL EXAMPLES

The computer program was developed based on the dis-
cussed method, and it is capable of handling an arbitrary
number of dielectric layers and conductors and designed to
read mesh data from a conventional mesh generator to allow
computation of the complex geometries and meshes. First,
the capacitance matrix for three conductors with finite thick-
nesses in a layered medium, shown in Fig. 4, is computed.
The number of basis functions used was 100 for each conduc-
tor, and the maximum number of exponentials used to ap-
proximate the coefficient function K,Jfly,u was 5. Comparison
with results in [3] is shown in Table I. In [3], the spectral-
domain Green's function is numerically integrated to convert
to the space domain using a Gaussian quadrature formula in
conjunction with analytical asymptotic extraction. For the
next numerical example, the equivalent capacitances for a
microstrip crossover is considered. The same geometry used
in {4] was considered, where €1 and & were 2 and 1, and the
heights of the lower and upper microstrip lines were 4 mm
and 6 mm, respectively. The widths of both strips were 0.16
mm. Table II shows the comparison with {4]. In Table II, c{'
and ¢y’ are the capacitances per unit length of the isolated
lines with radii equal to 0.25W and €;=€5=1. The Green's
function used in [4] is based on the image principle in the
space domain and involves an infinite summation. According
to [4], only ten terms were sufficient to evaluate the infinite
summation for this particular structure, where lines are ex-
tremely narrow. However, it can be easily seen from the
expression of their Green's function the number of terms
required will be much larger for wider microstrip lines.

CONCLUSIONS AND FUTURE WORK

In the capacitance computation, the time to construct the
moment matrix takes the major portion of the computation
time, the presented method significantly reduced this compu-
tation time by obtaining the closed-form Green's function
numerically. The method was verified with numerous other
published results, and only two rather complex examples are
presented here. Finally, it is emphasized again that the pre-
sented method avoids any numerical integration or infinite
summations.
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