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Abstract-An efficient method to compute the 2-D and 3-D

capacitance matrix of multiconductor interconnects in a mnlti-

layered dielectric medium is presented. The method is applica-

ble to conductors of arbitrary polygon shape embedded in a

multilayered dielectric medium with possible ground planes on

the top or bottom of the dielectric layers. The computation time

required to evahrate the space-domain Greerr’sfunction for the

mrdtifayered merKum, which irwolves an inthrite summation, has

been greatly reduced by obtahdug a closedform, which is de-
rived by approximating the Green’s function using a firrite

number of images in the spectral domain. The corresponding

space-domain Green’s functions are then obtained using the

proper closed-form integrations. The elements of the moment

matrix are computed using the closed-form formulation, avoid-

ing any numerical integration. The presented method showed

good agreement when compared with other pubtished results

I. INTRODUCTION

The computation of parasitic capacitance coefficients in
multilayered media is most commonly performed using an
integral equation [1]- [4]. One major limitation of this ap-
proach is the infinite summation involved in the computation
of the Green’s function and the inexistence of a closed-form
expression in the space domain, As noted in [2], for N layers,
the expression for the Green’s function would consist of N- 1
infinite series. Alternatively, the free-space Green’s function
is used in [2] to avoid infinite series, but additional unknown
charges on the dielectric interface and ground plarres, on top
of the unknown charges on the conductor surface, must be
included.

Yet another approach to avoid an infinite summation is to
solve the integral equation in the spectral domain (SDA),
where the Green’s function is in a closed form; however, this

approach Cm not be applied to general problems, e, g., con-
ductor with a finite thickness. In this paper, the Green’s func-
tion for the layered medium is approximated in the spectral
domain using the exponential functions, which is equivalent
to a firrite number of weighted real images in the space do-
main. Although the complex-valued exponential, which are
often used in a nonquasi-TEM analysis [5], can also be em-
ployed to reduce the number of weighted images, the real-
wdued exponential are sufficient to approximate for quasi-
TEM applications, and it further avoids the use of expensive
complex operations. Since the spectral-domain representa-

tions of the Green’s function for 2-D and 3-D cases are iden-
tical, the approximation is only performed once for both
cases. After determining the equivalent weighted images in
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Fig. 1. The geometric configuration used for determining the Green’s
function.

cases. After determining the equivalent weighted images in
the spectral domain, they can be directly used to evaluate the
Green’s function in the space domain.

fl APPROXIMATION OFTHE GREENS FUNCTION IN THE

SPECTRAL DOMAIN

Consider a unit point cbmge located at the mth layer at
(Xo,yo,zo) (Fig. 1). Noting that the dielectric medium is uni-

form in two directions, we can represent the Green’s function
and the point source in the spectral domain in terms of its
transforms in the x and z dkections. Then, solving the corre-

sponding spectral-domain Laplace’s equation with appropriate
boundary conditions at the dielectric interfaces, the spectral-
domain Green’s function can be found as
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where G(a, p, ylro ) is the spectral domain Green’s function

and rx and ~ me the transform constants associated with the x

and z directions, respectively. The subscript m denotes the

layer where the source is located (source point) while the

subscript n denotes the layer where the Green’s function is

evaluated (observation point). ~j,j+l is tbe generalized re-

flection coefficient, which is the ratio of the amplitudes of

voltages at y=dn due to the image charges located above and

below the jth layer. ~j, j+, takes the value of O or -1 if the jth

layer is a half space, or the (j+l)th layer is a ground plane,

respectively. The superscript + is used to denote the quanti-

ties related with the Green’s function for y 2 y.. The similar

expressions can be obtained for y < y..

In Equation (1), ~~,n, ~ is not a function of y and yo, and
the determination of the closed-form space-domain Green’s
function can now be preceded by approximating the coeffi-
cient functions K+m,~,t of the exponential terms, It is imPor-
tant to notice that we have also factored out other exponential
terms which dominate the behavior of the function for large ~
this, in turn, will assure an accurate approximation of the
function at the short range of dktance in the spacedomain.

A physically intuitive approach to approximate the poten-
tial due to a charge in the layered medium is the use of a

finite number of the weighted image charges in the homoge-
neousmedium, which is equivalent to approximating the co-

efficient functions K; ~ i with exponential functions in the

spectral domain. The equivalence between the weighted
image charges and exponential functions will be shown later

in Equations (15) and (16). Noting that the coefficient func
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Fig. 2. The geometry used to test the approximated Green’s function.

tions K; ~ ~ are real-valued and nonoscillatory, the real-

valued exponential are sufficient to approximate the coeffi-

cient functions and avoid any complex operations. A relax-
ation algorithm based on curve fitting in [6] is used here.

Although this method is simple and iterative in nature, it

converges to reasonable accuracy in a few iterations, and

requires less computation time as compared to the other exist-

ing methods, such as, the generalized pencil-of-function

(GPOF) and the Prony methods.

In the process of the approximation, the symmetry of tbe

coefficient functions K:, ~,~ is explored to increase the accu-

racy of the approximated functions and to reduce the compu-

tation time. The same approximation procedure can be ap-

plied for the case for y < ya,
The Green’s function for tbe structure shown in Fig. 2 is

approximated and compared with the exact Green’s function
in the spectral domain. The dielectric constants &1, .52, and

&3 are taken to be 2E0, 58., and &o, accordingly. The thick-

nesses of tbe layers tl and t2 zwe0.6 mm and 1.0 mm, and the

source and observation points, y and yo, are 0,6 mm and

1.6mm, respectively. A maximum frequency of 10 kHz and
an average number of 7 exponential were used to approxi-
mate the Green’s function. As shown in Fig. 3(a), the ap-
proximated results agree with the original one, except for
very small arguments where the approximation errors are
amplified by the singularity factor (see Equation (1)). It is
important to observe that although the exponential approxi-
mation might fail to approximate for the large argument due
to its fast decaying nature, by extracting the asymptotic vrdue
and the exponential factor from the coefficient function, the
limiting behavior of the overall approximated Green’s func-
tion would still remain accurate. Hence, it is expected that
the approximated Green’s function will be accurate for tbe
short distance range in the space domain.

After approximating the Green’s function in the spectral
domain, one can obtain the space domain Green’s function

using the following identity:
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Fig. 3, Comparisonof approximatedandexactGreen’sfunctionsin (a) the
speckd domain and @) the space domain for the 3-D case.

which can be viewed as the static version of Weyl’s identity
and can be derived by considering the potential due to the
unit point charge. Thus, in the space domain, the approxi-
mated Green’s function can be written as

G(rlro ) = +- $:*(riro)

m J-

(8)

where the superscript + for y 2 y. and - for y S Y.. For j= 1,

the expression for ~,+ (rlro) is given by
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Here, K; ~ j denotes the asymptotic value of K~,n, j and we

have assumed that Kj,n, j is approximated by

(lo)

where N;, ~,j is the number of exponential functions used to

approximate the coefficient function K+

The identical expression can be $%~ed for the two-
dimensional Green’s function where the transform variable y
will be associated with x, and the following identity can be

used to obtain the space-domaia expression:

Thus, the space domain expression similar to Equation (8)
can be obtained as follows:

(12)

where, f,+(rlro ) is the corresponding logarithmic function.
The approximated Green’s function is also compared in the

space domain. The same structure is used as in the previous
one with E2=&l=2&o, and z and ~ were 0.6 mm and 1.6 mm,

respectively. A maximum frequency of 4 kHz and 5 expo-
nential were used in the approximation. The exact Green’s
function is obtained by applying the image principle in the
space domain. Again, both Green’s functions are plotted in
Fig. 3(b) and showed a good agreement.

Although it is not clearly shown in Fig. 3(b) the relative

approximation error was found to increase monotonically as
the distance between the source and observation points in-
creased; however, the error still remained small for a practical
range. In this particukw case, the relative error at P=1OO mm
was less than 1 percent.

N. SOLUTION METHOD FORTHE INTEGRAL EQUATION

The integral equation relating the electrostatic potential
V(r) to the charge density p(r) is

V(r) = ~G(r, ?’)p(r’)dr’ (13)

n

where G(r, r’) is the Green’s function for the multilayered

medium, and Q is surfaces or cross-sectional boundaries of
all conductors for 2-D or 3-D problems, respectively.
Employing the pulse-type basis functions and the point
matchhrg technique, Equation (13) becomes

~ = ~qk ~G(qlr)dC2, i=l,2,..., NT (13)
k=l O,k

where qk is the unknown coefficient to be determined, and

NT is the total number of basis functions used. The closed-

form formulae for the evaluation of Equatiou (13) over an

Rrbitray polygon patch and a Iine segment are given in [7].

Thus, the resulting matrix form Equation (13) can be con-

structed without any numerical integration.

431



fIL NUMERICAL EXAMPLES

The computer program was developed based on the dis-
cussed method, and it is capable of handling an arbitrary

number of dielectric layers and conductors and designed to

read mesh data from a conventionrd mesh generator to allow

computation of the complex geometries and meshes. First,

the capacitance matrix for three conductors with finite thick-

nesses in a layered medium, shown in Fig. 4, is computed.

The number of basis functions used was 100 for each conduc-

tor, and the maximum number of exponential used to ap-

proximate the coefficient function K~,n,, was 5. Comparison

with results in [3] is shown in Table I. In [3], the spectral-

domain Green’s function is numerically integrated to convert

to the space domain using a Gaussian quadrature formula in

conjunction with analytical asymptotic extraction. For the

next numerical example, the equivalent capacitances for a

microstrip crossover is considered. The same geometry used

in [4] was considered, where &l and &2 were 2 and 1, and the

heights of the lower and upper microstrip lines were 4 mm

and 6 mm, respectively. The widths of both strips were 0.16

mm. Table II shows the comparison with [4]. In Table II, cl’

and C2’ are the capacitances per unit length of the isolated

lines with radii equal to 0.25W and &~=&2= 1. The Green’s
function used in [4] is based on the Image principle in the

space domain and involves an infinite summation, According

to [4], only ten terms were sufficient to evaluate the infinite

summation for this partmrlar structure, where lines are ex-

tremely narrow. However, it can be easily seen from the

expression of their Green’s function the number of terms

required will be much larger for wider microstrip lines.

C0N12Lus10NSAND FUTURE WORK

In the capacitance computation, the time to construct the
moment matrix takes the major portion of the computation
time, the presented method significantly reduced thk compu-
tation time by obtaining the closed-form Green’s function
numerically. The method was verified with numerous other
published results, and only two rather complex examples are
presented here. Finafly, it is emphasized again that the pre-
sented method avoids any numerical integration or infinite
summations,
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